Genetic interactions between the chlorate-resistant mutant cr 8 8 and the photomorphogenic mutants cop1 and hy5.

نویسندگان

  • D Cao
  • Y Lin
  • C L Cheng
چکیده

The chlorate-resistant mutant cr88 is defective in photomorphogenesis, as shown by the phenotypes of long hypocotyls in red light and yellow cotyledons under all light conditions. A subset of light-regulated genes is expressed at subnormal levels in cr88. To analyze further the role that CR88 plays in photomorphogenesis, we investigated the genetic interactions between cr88 and mutants of two other loci affecting photomorphogenesis, CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) and LONG HYPOCOTYL5 (HY5). COP1 represses the expression of light-regulated genes in the dark, and HY5 inhibits hypocotyl elongation in the light. Using morphological, cellular, and gene expression criteria for epistasis analyses to position CR88 in the genetic hierarchy of the photomorphogenesis pathway, we determined that CR88 acts downstream of COP1 but in a branch separate from HY5. In the course of our analysis, we discovered that light causes extensive destruction of plastids in dark-grown cop1 seedlings and that cr88 prevents this destruction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short Hypocotyl in White Light1 Interacts with Elongated Hypocotyl5 (HY5) and Constitutive Photomorphogenic1 (COP1) and Promotes COP1-Mediated Degradation of HY5 during Arabidopsis Seedling Development.

Arabidopsis (Arabidopsis thaliana) Short Hypocotyl in White Light1 (SHW1) encodes a Ser-Arg-Asp-rich protein that acts as a negative regulator of photomorphogenesis. SHW1 and Constitutive Photomorphogenic1 (COP1) genetically interact in an additive manner to suppress photomorphogenesis. Elongated Hypocotyl5 (HY5) is a photomorphogenesis promoting a basic leucine zipper transcription factor that...

متن کامل

PHYTOCHROME INTERACTING FACTOR1 Enhances the E3 Ligase Activity of CONSTITUTIVE PHOTOMORPHOGENIC1 to Synergistically Repress Photomorphogenesis in Arabidopsis.

CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) is a RING/WD40 repeat-containing ubiquitin E3 ligase that is conserved from plants to humans. COP1 forms complexes with SUPPRESSOR OF PHYTOCHROME A (SPA) proteins, and these complexes degrade positively acting transcription factors in the dark to repress photomorphogenesis. Phytochrome-interacting basic helix-loop-helix transcription factors (PIFs) also rep...

متن کامل

Molecular interaction between COP1 and HY5 defines a regulatory switch for light control of Arabidopsis development.

Arabidopsis COP1 acts as a light-inactivable repressor of photomorphogenic development, but its molecular mode of action remains unclear. Here, we show that COP1 negatively regulates HY5, a bZIP protein and a positive regulator of photomorphogenic development. Both in vitro and in vivo assays indicate that COP1 interacts directly and specifically with HY5. The hyperphotomorphogenic phenotype ca...

متن کامل

An Arabidopsis SUMO E3 Ligase, SIZ1, Negatively Regulates Photomorphogenesis by Promoting COP1 Activity

COP1 (CONSTITUTIVE PHOTOMORPHOGENIC 1), a ubiquitin E3 ligase, is a central negative regulator of photomorphogenesis. However, how COP1 activity is regulated by post-translational modifications remains largely unknown. Here we show that SUMO (small ubiquitin-like modifier) modification enhances COP1 activity. Loss-of-function siz1 mutant seedlings exhibit a weak constitutive photomorphogenic ph...

متن کامل

Arabidopsis COP8, COP10, and COP11 genes are involved in repression of photomorphogenic development in darkness.

Wild-type Arabidopsis seedlings are capable of following two developmental programs: photomorphogenesis in the light and skotomorphogenesis in darkness. Screening of Arabidopsis mutants for constitutive photomorphogenic development in darkness resulted in the identification of three new loci designated COP8, COP10, and COP11. Detailed examination of the temporal morphological and cellular diffe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant cell

دوره 12 2  شماره 

صفحات  -

تاریخ انتشار 2000